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ABSTRACTABSTRACT

The measurement of the thermal conductivity of a fluid by means of the transient

hot-wire technique, so far has made use of an analytical solution of the energy

conservation equation for an ideal model, coupled with a set of approximate analytical

corrections to account for small departures from the model. For this solution to be valid,

constraints were always imposed on the experimental conditions and the construction of

the apparatus, resulting in an inability to measure the thermal conductivity of fluids with

high thermal-diffusivity values.

In this paper, the set of energy conservation equations describing the transient

hot-wire apparatus, is solved using the numerical finite-element method. Because no

approximate solutions are involved, this provides a much more general treatment of the

heat transfer processes taking part in the real experiment, removing all the

aforementioned constraints.

In the case of the measurement of the thermal conductivity of liquids (fluids with

low thermal-diffusivity values), the numerical solution fully agrees with the existing

analytical solution. In the case of the measurement of the thermal conductivity of gases,

the present solution allows the extension of the application of the transient hot-wire

technique to experimental conditions where the value of the thermal diffusivity of the

fluid is high.

KEY WORDS: energy-conservation equations; finite-element method; high thermal-

diffusivity fluids; low density measurements; thermal conductivity; transient-hot wire.



1.  1.  INTRODUCTIONINTRODUCTION

The transient hot-wire technique is widely employed today for the accurate

measurement of the thermal conductivity of fluids, both in the liquid and gas phase, in a

wide range of temperatures and pressures. However, there are two regions of thermo-

dynamic state where the application of the method presents a loss of accuracy. The first

region is near the critical point and the second, in the region where fluids exhibit high

thermal-diffusivity values i.e. low-density region. The observed inability [1] of thermal-

conductivity measurements in this latter region is very unfortunate, as accurate zero-

density thermal-conductivity values are required by kinetic-theory treatments.

Moreover, as it has been stated elsewhere [2], the same problem appears in the

measurement of the thermal conductivity of refrigerants in the vapour phase, since

these fluids generally show along the saturation line a maximum pressure of 2 MPa.

Previous studies that attributed the observed inability to the compression work of the

gas were rejected, since a recent analytical and numerical study [3] has proved that the

effect of compressibility is always insignificant in the dilute-gas region.

In this paper, the energy-conservation partial-differential set of equations that

describe the transient hot-wire theory is solved using the numerical finite-element

method. A computer program was developed and employed in order to study the

evolving temperature field within the wire and the fluid. From the comparison of the

measured temperature rise and the simulated one, the thermal conductivity of argon

was obtained at high and low pressures, in a transient hot-wire instrument. To

conclude the analysis, this numerical solution is compared with the analytical one

employing a) the exact corrections given by Carslaw and Jaeger [4], and b) the

approximate corrections given by Healy et al [5].

2.  2.  THEORY OF THE TRANSIENT HOT-WIRE TECHNIQUETHEORY OF THE TRANSIENT HOT-WIRE TECHNIQUE

2.1. The analytical treatment

The detailed theory of the transient hot-wire technique is described elsewhere [6].



The analytical working equation of the method is [6]:
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where ÄT(r, t) is the transient temperature rise at a radial distance r in the fluid, ë and ê

the thermal conductivity and thermal diffusivity of the fluid respectively, q the heat input

power per unit length and C the Euler’s constant. Eq.(1) describes the ideal model which

cannot be employed directly to the practical instrument. A number of analytical corre-

ctions were developed [4] and imposed on Eq.(1) to eliminate the departure of a pra-

ctical instrument from the ideal one. The two major applied corrections are:

a) The heat capacity correction,  ÄThc, significant only at short experimental times [4]
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In these expressions, á  is the wire radius and the subscript "w" refers to wire properties.

Furthermore, J0 and J1 denote Bessel functions of first kind, of order zero and one

respectively, while Y0 and Y1 express Bessel functions of second kind, of order zero and

one.

b) The outer boundary correction, ÄÔob, significant only at long experimental times
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where b is wire-enclosure radius and á n are the positive roots of the equation:

J Y   Y J   1 0 1 0( ) ( ) ( ) ( )ax bx ax bx− = 0 (6)

As it can be seen from Eqs. (2)-(6), these corrections are not only mathematically too

complicated but also cannot be calculated analytically. Healy et al [5] proposed



approximate solutions of Eqs.(2) and (5) valid for large values of (4êt/a2). Ôhese

solutions together with Eq.(1) formed a consistent set in order to calculate the thermal

conductivity from the measured temperature rise. The application of this methodology

to liquids and gases at moderate pressures has provided many reliable thermal-

conductivity data over the last two decades. Unfortunately, the corrections proposed by

Healy et al [5] proved to be inadequate [1,7] for the description of experimental runs at

low densities, where fluids exhibit high thermal-diffusivity values. Consequently, until

now measurements at this region were avoided.

2.2.  The Numerical Solution

The inability of the Healy methodology to describe low-density experimental

thermal-conductivity data, motivated us to apply a different approach for the calculation

of thermal conductivity from the measured temperature rise. Hence, the numerical Finite

Element Method (F.E.M.) was chosen in order to solve the complete set of energy-

conservation equations that describe the heat-transfer experimental processes. The

choise of this particular numerical method was dictated by the high accuracy the method

exhibits in computational heat transfer problems [8].

The energy equations to be solved are two coupled partial differential equations,

one for the wire, 0 < r ≤ á :
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and one for the fluid, á ≤ r < ∞:
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The symbols ñ and Cp denote the density and the specific heat. On the wire/fluid

interface both the temperature and the heat flux are considered to be continuous. This

means that for r = á ,

λ
∂
∂

λ
∂
∂w

w 

 
 

 

 

T
r

T
rr=a r=a





 =





 and ( ) ( )T a t T a tw     , ,=  (9)  



The aforementioned set of equations are subject to following initial and boundary

conditions:

For t = 0  and any r Tw = T = 0 (10)

For t > 0  and at r = 0, due to symmetry
∂
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r
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For t > 0  and at r = b T = 0 (12)

Eqs.(7)-(12) are written in a dimensionless form using the following dimensionless

variables:
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Substituting the aforementioned dimensionless variables in Eqs.(7)-(12) the following

set of dimensionless partial differential equations, initial and boundary conditions are

obtained:
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For t* = 0  at any r* T Tw
* = = 0 (16)

For t* > 0  and r*= 0 
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For t* > 0  and r*= b / a T * = 0 (18)
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As it can be seen from Eqs.(14) and (15), the problem is one-dimensional with respect

to radial direction. Therefore, the field of application is a straight line, discretized  in

250 elements, representing the 6 mm actual radial distance, irregularly spaced. The

mesh constructed is a lot more dense at the wire/fluid interface. At each nodal point,

the above equations are solved to calculate the value of the temperature rise. Since this

is a time-dependent problem, the solution is obtained using the forward difference

(Euler) scheme [8]. Fortunately, the set of the energy-conservation equations described

above is linear. As a result the derived set of algebraic equations is also linear and is



solved using a modification of the Gaussian elimination method (LU decomposition

method) [9]. Hence, a computer program was developed for the simulation of the

measured temperature rise and the consequent calculation of the thermal conductivity.

2.3.  Case Studies

In order to check that the program is working properly and accurately, it was first

tested against a problem on conduction of heat in composite solids, very similar to the

transient hot-wire case, with a known analytical solution [4]. The numerical solution of

the temperature rise simulates the analytical one within 0.2%.

Consequently, the developed algorithm was tested against an actual transient hot-

wire experiment with toluene as the sample fluid. The measured transient temperature

rise is compared against the computed temperature rise in Table I. At this stage, the

following three points need to be mentioned:

a) Since the simulation program solves an energy-conservation equation within the

metallic wire, it takes into account the properties and the finite dimensions of the

wire. Thus, the heat capacity correction is fully taken into consideration.

b) The temperature distribution function within the radius of the wire can be calcu-

lated. From the integration of the temperature distribution function over the wire

radius, the value of the transient temperature rise calculated for the whole wire and

not only at the wire/fluid interface.

c) Finally, the imposition of boundary conditions at the wire-enclosure circumference,

assumes the existence of a real isothermal wall at a finite radius and not at infinity

and therefore the outer boundary correction is also properly accounted for.

While examining Table I, one must keep in mind that the thermal conductivity is

calculated from the slope of the temperature rise vs the logarithm of the time. Therefore

absolute differences in the temperature rise (about 40 mK) are insignifficant in relation

to the difference in slopes, which is only ±2 mK. Thus, the comparison shows that the

slopes of the simulated and the experimental temperature rises are identical. Hence, the



correct value of the thermal conductivity is calculated using the F.E.M. for the theoretical

analysis of the experimental data. More experimental runs on liquid and gases at

elevated pressures were checked against the computer program and the thermal

conductivity computed at all times was accurately obtained. It is therefore concluded

that the F.E.M. in the aforementioned cases, produces thermal-conductivity values at

least as accurate as the ones produced by the approximate analytical solution.

Furthermore, the implementation of the numerical method has the advantages of an

easy check of all other parameters that may influence the actual experiment and are

included in the energy conservation equations. An example of the temperature evolution

in the wire and the fluid is shown in Figure 1.

3.  EXPERIMENTAL3.  EXPERIMENTAL

 The high accuracy attained in the calculation of the thermal-conductivity values

using the numerical F.E.M. has led us to its application in the analysis of thermal-

conductivity measurements of fluids with high thermal-diffusivity values, e.g. argon at

room temperature and atmospeheric pressure. Therefore, a series of measurements

were performed in a transient hot-wire instrument specially constructed for the

measurements of the thermal conductivity of  refrigerants in the vapour phase. The full

description of the instrument is given in detail elsewhere [2]. Transient measurements

were performed in argon at 300 K and pressures from 0.15 MPa up to 4.8 MPa. The

experimental temperature rise data were analysed applying three different methodolo-

gies:

A. The analytical solution with approximate corrections proposed by Healy et al [5].

B. The analytical solution with exact corrections proposed by Carslaw and Jaeger [4].

As these corrections cannot also be calculated analytically, the 3/4 Simpson’s

numerical integration technique was adopted for the calculation of Eqs.(2) and (5).

In the case of the outer boundary correction twenty different positive roots of Eq.(6)

were found to be enough for the accurate calculation of the correction.



C. The numerical solution using the Finite Element method.

The results obtained using these three different methodologies are shown in Table II. In

the same table for comparison purposes, the "correct" values of the thermal conductivity

of argon [10] are also shown. The thermal-conductivity values calculated by the nume-

rical F.E.M. and the analytical solution using the exact corrections proposed by Carslaw

and Jaeger [4] agree very well both mutually and with the literature values. The observed

difference, in Table II, between the thermal-conductivity values calculated by the

analytical solution with the corrections proposed by Healy et al [5] and the other two

methodologies are attributed in general to the approximations inserted by Healy et al, in

order to simplify both the heat capacity and the outer boundary corrections.

The advantage of the F.E.M. method can be clearly seen in the treatment of the

heat-capacity correction. Although the outer-boundary correction can be rendered very

small by chosing a large diameter enclosure, the heat-capacity correction still must be

calculated. In Figure 2 we show a comparison of the two aforementioned approaches

from the F.E.M. solution, for a experimental run of argon at 300 K and 0.15 MPa. The

numerical F.E.M. and the analytical solution using the exact corrections proposed by

Carslaw and Jaeger [4] are very similar as expected. An approximate solution given by

Taxis and Stephan [7] is also included in the figure.

4.  CONCLUSIONS4.  CONCLUSIONS

Based on the finite element method a computer program was successfully

developed, able to solve the energy conservation equations that describe the heat

transfer processes, taking place during an experimental run in a transient hot-wire

instrument. Comparisons between the different existing methodologies employed to

compute the thermal conductivity from experimental data revealed differences,

especially for gases in the low pressure region. In this region both the heat capacity and

outer boundary corrections are significant. Therefore, for the accurate theoretical

analysis of the experimental data produced by the transient hot-wire technique, either



the complete set of corrections proposed by Carslaw and Jaeger must be employed or,

better, a numerical Finite Element Method. For the outer-boundary correction, either the

wall enclosure must be moved away from the wire or again a F.E.M. approach should be

employed. The F.E.M. calculates all the significant corrections to the transient hot-wire

ideal model, avoiding extra simplification of the working equations to analytical forms

that cannot simulate accurately the experimentally measured temperature rise,

especially for the case of fluids with high thermal-diffusivity values.                 
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Table ITable I. Comparison between Experimental and Computed (F.E.M.)

Temperature rise for  Toluene.

Time

(sec)

Experimental

Temperature rise

(K)

Computed

Temperature rise

(K)

Difference

(mK)

0.1997 2.321 2.278 43

0.2085 2.343 2.303 40

0.2334 2.388 2.350 38

0.2605 2.433 2.394 39

0.2884 2.478 2.437 41

0.3212 2.523 2.482 41

0.3603 2.568 2.530 38

0.3989 2.613 2.573 40

0.4214 2.635 2.595 40

0.4718 2.680 2.641 39

0.5210 2.726 2.685 41

0.5518 2.748 2.709 39

0.6162 2.793 2.752 41

0.6475 2.816 2.777 39

0.6807 2.838 2.797 41

0.7211 2.862 2.820 42

0.7648 2.884 2.846 38

0.8087 2.906 2.866 40

0.8550 2.929 2.889 40

0.8953 2.952 2.913 39

0.9480 2.974 2.933 41



Table IITable II. Thermal-conductivity values of argon at 300 K at different pressures.

Pressure

(MPa)

Analytical solution +

Healy’s approximate

corrections

(mW⋅m-1⋅K-1)

Analytical solution +

Carslaw and Jaeger’s

corrections

(mW⋅m-1⋅K-1)

F.E.M.

Numerical

solution

(mW⋅m-1⋅K-1)

Literature

values

[10]

(mW⋅m-1⋅K-1)

4.80 19.80 19.84 19.87 19.80

3.40 19.10 19.21 19.20 19.16

2.60 18.80 18.78 18.79 18.84

1.50 18.32 18.34 18.36 18.39

1.05 18.10 18.15 18.14 18.21

0.35 17.55 17.90 17.92 17.93

0.14 17.30 17.72 17.73 17.83
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Fig. 1.  The temperature rise evolution in the wire and the fluid at different times and

axial distances.
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Fig. 2. Deviations from  the temperature rise calculated by the F.E.M. approach, of

a) ( ) the ideal solution incorporating Carslaw and Jaeger corrections [4];

b) ( ) Healy et al equations [5];

c) ( ) Taxis and Stephan approximate equations [7];

for argon at 300 K, 0.15 MPa, for an isothermal wall at a 6 mm radial distance

from the wire.


